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Abstract—The task of community detection has become a
fundamental research problem in complex network analysis.
Intuitively, similar nodes are more likely to be contained in the
same community. However, most existing community detection
methods cannot extract the intrinsic similarity between nodes.
Thus, they may fail to identify the real community structures.
In this paper, we propose to learn an affinity matrix adaptively,
which can capture the intrinsic similarity between nodes accu-
rately, and therefore benefit the community detection results.
Specifically, the proposed model first embeds each node into
a low-dimensional space through a transformation matrix with
the community structures being preserved. Then, our model
learns the affinity matrix in this low-dimensional space. The
affinity matrix is further utilized to guide the learning of the
community membership matrix via manifold regularization. The
above three matrices are learned simultaneously and updated
iteratively under the framework of Alternating Direction Method
of Multipliers (ADMM). Extensive experiments show that our
model can outperform the state-of-the-art approaches.

Keywords-community detection, affinity learning, nonnegative
matrix factorization, complex networks, ADMM

I. INTRODUCTION

Community detection targets at assigning community labels

to nodes in a given network such that the nodes in the same

community share higher similarity than the nodes in different

communities [1]. Over the last two decades, lots of community

detection methods have been proposed [2]. These methods

can be roughly categorized into two classes: 1) The methods

[3], [4] that can automatically identify the optimal community

structures based on a certain criterion, e.g., modularity [5]

and permanence [6]; 2) The methods [7], [8], [9] that require

a parameter to specify the number of communities to detect.

The first class of methods usually seek to identify communi-

ties by just leveraging the explicit link information. Typical

methods of this class include Girvan-Newman’s modularity

maximization algorithm [1] and its variants like Louvain [4].

However, the link topology is a microscopic description of

the whole network, it cannot reflect the intrinsic community-

level similarity between nodes accurately due to its lower

granularity. As a result, the detected communities may be quite

different from the ground-truth. Recently, the second class

of methods are gaining increasing popularity, among which,

the nonnegative matrix factorization (NMF) based model has

been widely adopted [7], [8], [9]. This is because NMF has

high interpretability derived from the nonnegative constraints

and more information can be incorporated into the framework

of NMF flexibly via manifold regularization [10]. Obviously,

the additional information can be used to better describe the

similarity between nodes. However, the additional information

is not always available and usually application-oriented and

one-sided, thus it is still quite difficult to reflect the intrinsic

similarity between nodes.

In this paper, we propose a novel framework to adaptively

learn an affinity matrix with the ability to capture the intrinsic

similarity between nodes, and therefore lead to high-quality

community detection results. The proposed community detec-

tion model is built upon the NMF framework, and is named

as Adaptive Affinity NMF (A2NMF). Instead of taking more

additional information into consideration, we aim to make

the best of the network topology. Thus, our model is more

general and more applicable. It is noted that networks gathered

from real world are inevitably incomplete, i.e., there may be

missing or noisy edges/links. Therefore, in order to make

the learned affinity matrix more robust, we first embed each

node into a low-dimensional space via a transformation matrix,

which can preserve the community structures well. We then

learn the affinity matrix in this low-dimensional space. And

the learned affinity matrix is further employed to guide the

learning of the community membership matrix. These three

matrices are learned simultaneously rather than separately,

thus they can guide each other during the learning process.

This mutual guidance makes our model capable of finding the

intrinsic similarity between nodes and the accurate community

memberships. Extensive experiments further demonstrate the

efficiency and effectiveness of the proposed model.

II. REVISITING NMF FOR COMMUNITY DETECTION

Notations: Throughout this paper, we denote matrices by

bold uppercase letters and vectors by bold lowercase letters.

For a given matrix X, its i-th row and j-th column are denoted

by xi and xj , and its (i, j)-th element is denoted by xij . The

trace and Frobenius norm of X are denoted by Tr(X) and

‖X‖F respectively. Then, we have ‖X‖F =
√
Tr(XTX). Be-

sides, we use < X,Y > to denote the Euclidean inner product

between matrices X and Y, i.e., < X,Y >= Tr(XTY). In

particular, we use Ic to denote the identity matrix of size c×c.
The �2-norm of a vector x is denoted by ‖x‖2.

Let G = (V,E) be an undirected and unweighted simple

network with n = |V | nodes and m = |E| edges, where V
and E denote the node set and edge set respectively. Network
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G is typically represented by a binary-valued adjacency matrix

A ∈ {0, 1}n×n whose (i, j)-th element aij indicates whether

there is an edge between nodes i and j or not. The problem

of community detection is to partition network G into k
disjoint subnetworks such that nodes in each subnetwork are

densely connected (highly similar) and nodes across different

subnetworks are sparsely connected (highly dissimilar). Each

subnetwork corresponds to a community.
In general, the NMF-based community detection methods

seek to factorize the adjacency matrix A into the product

of two identical low-rank matrices with the nonnegative con-

straints, i.e., A ≈ UUT (U ∈ R
n×k
+ ). Each row of U denotes

a node, and each column of U represents a community.

Therefore, uij can be interpreted as the probability of node i
belonging to community j. From a generative model perspec-

tive, uij can be further treated as the probability that node i
generates an edge belonging to community j. Accordingly,

air can be viewed as the probability that there exists an

edge between nodes i and r in network G. Consequently, the

probability that nodes i and r are linked in community j can

be calculated by uijurj . Summing over all communities, we

obtain the probability that nodes i and r are linked in network

G is
∑k

j=1 uijurj , which should be as consistent as possible

with air. Thus, we have the following objective function:

min
U

‖A−UUT ‖2F , s.t. U ≥ 0. (1)

Based on the learned U, the community membership of each

node i is defined as the index of the largest element in ui.
The model in (1) aims to minimize the reconstruction error

of A from U. Clearly, its performance depends heavily on the

completeness of A. When there are missing or noisy edges,

the performance may degrade severely. To make the model

in (1) more robust, extra constraints should be imposed on U.

One of the most widely adopted methods is to add a manifold

regularization term. For community detection, the most basic

assumption is that two linked nodes are more similar than two

non-linked nodes [9]. Thus, we can derive:

min
U

‖A−UUT ‖2F + γTr(UTLAU), s.t. U ≥ 0, (2)

where γ is the regularization parameter and LA is the Lapla-

cian matrix defined by DA−A. Here, DA is a diagonal matrix

whose elements are row sums of A.
However, in (2), the Laplacian matrix LA is calculated

based on the adjacency matrix A directly. There are two main

drawbacks: 1) The quality of A still affects the performance

significantly; 2) Since A is binary-valued, it is unable to distin-

guish the similarity of different linked node pairs. Therefore, it

is a necessity to extract the intrinsic similarity between nodes

to better fit the community detection task.

III. A2NMF: THE PROPOSED MODEL

In this paper, we aim to learn adaptively an affinity matrix

S ∈ R
n×n
+ with each element sij denoting the learned simi-

larity between nodes i and j. S is expected to better describe

the intrinsic similarity between nodes, and consequently more

accurate community detection results can be obtained.

A. Adaptive Affinity Learning

It is reasonable to characterize a node by its linked nodes

and its non-linked nodes. Therefore, we denote the adjacency

matrix A as A = [a1,a2, · · · ,an]. In this way, each column

of A is regarded as a feature vector of the corresponding node.

To learn the affinity matrix S, a basic assumption is that nodes

with smaller distance should have larger similarity value. It is

straightforward to fulfill the basic assumption by calculating

the distance between nodes i and j as ‖ai − aj‖2. Unfortu-

nately, this simple measurement will result in unsatisfactory

performance. Due to the sparsity of real-world networks (i.e.,

most elements of ai or aj are zeros), it is inappropriate to

calculate the distance between nodes i and j as ‖ai − aj‖2
directly. Besides, this simple measurement still suffers from

the effects of missing or noisy edges. To address these issues,

we introduce a transformation matrix Q ∈ R
n×k′

(k′ � n) to

embed each node into the low-dimensional space R
k′

. In this

low-dimensional space R
k′

, the distance between nodes i and

j is then calculated as ‖QTai −QTaj‖2, which can reduce

the effects of both network sparsity and network noises. The

introduction of Q is inspired by Locality Preserving Projection

(LPP) [11], which requires the local similarity among different

nodes should be preserved. In this regard, Q plays the role of

dimensionality reduction. With the aid of Q, it is clear that

the sparsity issue and the effects of network noises can be

reduced. Then, we learn the affinity matrix S adaptively by:

min
S,Q

n∑
i,j=1

‖QTai −QTaj‖22sij + α‖S‖2F ,

s.t. QTAATQ = Ik′ , ∀i,
n∑

j=1

sij = 1, sij ≥ 0, sii = 0,

(3)

where α is a positive regularization parameter. Different from

LPP that imposes the orthogonality constraint on Q directly

[11], we choose to enforce the orthogonality constraint on

QTA, which can help strengthen the independence of different

feature dimensions in R
k′

. The summation constraint on each

row of S enables the learned similarity to be shift invariant.

The constraint sii = 0 is employed to avoid self-loop.

In (3), S is not restricted to be necessarily symmetric, this is

because similarity is usually non-isotropic across the networks

[12]. This relaxation also makes our model more general and

much easier to optimize. Based on the learned S in (3), we can

construct the Laplacian matrix LS as LS = DS−(ST +S)/2,

here, DS is a diagonal matrix whose elements are row sums

of (ST + S)/2. Clearly, LS is guaranteed to be positive

semidefinite. Then LS can be used to guide the learning of U.

However, this two-stage strategy may result in unsatisfactory

performance. This is because in the optimization of (3), there

is no guidance information with respect to the community

structures. To solve this problem, we choose to learn U and

S simultaneously. It is straightforward to achieve this goal

by replacing LA with LS in (2) and combining (2) and (3)

into a unified objective function. In this way, U can guide the

learning of S via the regularization term Tr(UTLSU).
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B. Community Preserving Node Embedding

Denote the network associated with S as G′ = (V,E′),
whose node set is the same as that of G. Since S is expected to

capture the intrinsic similarity between nodes more accurately,

G′ should have explicit community structures. Ideally, G′

should have exactly k connected components. In graph theory,

we have the following theorem [13], [14]:

Theorem 1. The multiplicity k of the eigenvalue 0 of the
Laplacian matrix LS equals the number of connected com-
ponents in the network G′.

Let δi denote the i-th smallest eigenvalue of LS. Since

LS is positive semidefinite, we have δi ≥ 0 for each i.
According to Theorem 1, G′ having k connected components

indicates that
∑k

i=1 δi = 0 [14]. Recall that S is learned in

the low-dimensional space R
k′

, thus it is essential to make

nodes contained in the same community group together in this

low-dimensional space. To this end, we derive the following

objective function according to the Ky Fan’s Theorem [15]:

k∑
i=1

δi = min
QTAATQ=Ik

Tr(QTALSA
TQ). (4)

Note that (4) corresponds to the first term in (3). To make S
better fit for community detection, (4) shows that we should

set k′ = k. That is, each node is embedded into the low-

dimensional space R
k. By optimizing (4), the nodes belonging

to the same community will be grouped together in the space

R
k. Thus, when k′ = k, the optimal transformation matrix Q

is able to preserve the community structures well.

C. The Unified Model

Based on the above discussions, we can now derive the final

objective function of our proposed A2NMF model as follows:

min
U,S,Q

‖A−UUT ‖2F + γTr(UTLSU)

+ β
n∑

i,j=1

‖QTai −QTaj‖22sij + α‖S‖2F ,

s.t. QTAATQ = Ik,U
TU = Ik,U ≥ 0,

∀i,
n∑

j=1

sij = 1, 0 ≤ sij ≤ 1, sii = 0,

(5)

where β is a tuning parameter. Note that we have imposed the

orthogonality constraint on U as well, which has two benefits:

1) With this constraint, some trivial solutions can be avoided;

2) The obtained U will be sparse, thus can better reflect the

community memberships.

IV. OPTIMIZATION

The objective function in (5) is not convex over the three

variables, i.e., U, S, and Q. To solve (5) efficiently, we

consider to employ the framework of Alternating Direction

Method of Multipliers (ADMM) [16] to optimize the three

variables iteratively. By further introducing two auxiliary

variables V = U and Z = QTA, then, we can rewrite the

objective function in (5) into the following equivalent objective

function:

min
U,S,Q,V,Z

‖A−VUT ‖2F + γTr(UTLSU)

+ β
n∑

i,j=1

‖zi − zj‖22sij + α‖S‖2F ,

s.t. V = U,Z = QTA,ZZT = Ik,V
TV = Ik,

U ≥ 0, ∀i,
n∑

j=1

sij = 1, 0 ≤ sij ≤ 1, sii = 0.

(6)

By introducing the augmented Lagrangian multipliers λ1, λ2,

and μ, (6) becomes:

min
U,S,Q,V,Z

‖A−VUT ‖2F + γTr(UTLSU)

+ β
n∑

i,j=1

‖zi − zj‖22sij + α‖S‖2F

+ < λ1,V −U > + < λ2,Z−QTA >

+
μ

2
(‖V −U‖2F + ‖Z−QTA‖2F ),

s.t. ZZT = Ik,V
TV = Ik,U ≥ 0,

∀i,
n∑

j=1

sij = 1, 0 ≤ sij ≤ 1, sii = 0.

(7)

In the ADMM framework, (7) is divided into the following

five sub-problems.

Update U: With S, Q, V, Z fixed, the objective function

in (7) is reduced to:

min
U≥0

‖A−VUT ‖2F + γTr(UTLSU)

+ < λ1,V −U > +
μ

2
‖V −U‖2F .

(8)

Given the fact that VTV = Ik, (8) can be further reduced as:

min
U≥0

1

2
Tr(UTRRTU)− < P,U >, (9)

where {
RRT = 2γLS + (μ+ 2)In,

P = λ1 + μV + 2AV.
(10)

It is easy to see that (9) is equivalent to the following Non-

Negative Least Squares (NNLS) problem:

min
U≥0

‖RTU−R−1P‖2F , (11)

which can be solved by the algorithm proposed in [17].

Update S: When U, Q, V, Z are fixed, we have:

min
S

γTr(UTLSU) + β
n∑

i,j=1

‖zi − zj‖22sij + α‖S‖2F ,

s.t. ∀i,
n∑

j=1

sij = 1, 0 ≤ sij ≤ 1, sii = 0.

(12)

Note that Tr(UTLSU) = 1
4

∑n
i,j=1 ‖ui−uj‖22(sij+sji) =

1
2

∑n
i,j=1 ‖ui − uj‖22sij . Let duij = ‖ui − uj‖22 and dzij =

‖zi − zj‖22. Therefore, (12) can be rewritten as follows:
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min
S

n∑
i,j=1

(γ
2
duijsij + βdzijsij + αs2ij

)
,

s.t. ∀i,
n∑

j=1

sij = 1, 0 ≤ sij ≤ 1, sii = 0.

(13)

Note that (13) is independent of different is, thus we can

optimize S row-by-row. Denote di ∈ R
n as a row vector with

the j-th element being dij = −(γ2duij + βdzij). Then, for each

i, (13) can be decomposed into the following sub-problem:

min
si

‖si − 1

2α
di‖22, s.t.

n∑
j=1

sij = 1, sij ≥ 0, sii = 0. (14)

Without loss of generality, we assume that all the ele-

ments in di are sorted in descending order, i.e., di1 ≥
di2 ≥ · · · ≥ din. Since sii = 0, we denote ŝi as ŝi =
[si1, si2, · · · , si(i−1), si(i+1), · · · , sin] (without sii in ŝi) and

d̂i as d̂i = [di1, di2, · · · , di(i−1), di(i+1), · · · , din] (without dii
in d̂i). Then, (14) is transformed into the following problem:

min
ŝi

‖ŝi − 1

2α
d̂i‖22, s.t.

n−1∑
j=1

ŝij = 1, ŝij ≥ 0, (15)

which can be efficiently solved by the method in [18]. Based

on ŝi, we can obtain the optimal solution of si immediately.

Update Q: To update Q, we fix U, S, V, Z, and remove

terms that are irrelevant to Q. Then, we obtain:

min
Q

μ

2
‖Z−QTA‖2F+ < λ2,Z−QTA > . (16)

Obviously, (16) is quadratic and convex over Q. Setting the

derivative of (16) w.r.t. Q to zero, we have:

Q = (AAT )†A
(
ZT +

1

μ
λT
2

)
, (17)

where (AAT )† denotes the Moore-Penrose inverse of AAT .

Update V: By fixing U, S, Q, Z, the objective function in

(7) is reduced to the sub-problem as below:

min
VTV=Ik

‖A−VUT ‖2F+ < λ1,V −U > +
μ

2
‖V −U‖2F .

(18)

The above sub-problem can be further rewritten as:

min
VTV=Ik

μ

2
‖V‖2F − μ < H,V >, (19)

where

H = − 1

μ
λ1 +U+

2

μ
AU. (20)

Then, we arrive at:

min
VTV=Ik

‖V −H‖2F , (21)

whose optimal solution can be easily generated as:

V = Ω1Ω
T
2 , (22)

TABLE I: Statistics of networks.

Networks n m k

Polbooks 105 441 3
Football 115 613 12
PoliticsIE 348 12,567 7
PoliticsUK 419 19,950 5
Olympics 464 7,787 28
EmailEU 1,005 25,571 42
Polblogs 1,490 16,715 2

where Ω1 and Ω2 are the left and right singular vectors of the

economic Singular Value Decomposition (SVD) of H.

Update Z: When updating Z with the other variables fixed,

the objective function in (7) becomes:

min
Z

2βTr(ZLSZ
T )+ < λ2,Z−QTA >

+
μ

2
‖Z−QTA‖2F , s.t. ZZT = Ik,

(23)

which can be efficiently solved by the algorithm in [19].

Update Lagrangian Multipliers: In each iteration, we

update the Lagrangian multipliers as follows:

λ1 = λ1 + μ(V −U),

λ2 = λ2 + μ(Z−QTA),

μ = ρμ (ρ ≥ 1).

(24)

Until now, we have all the update rules done. By alternating

the optimization of the five sub-problems above, the objective

function in (7) is guaranteed to be nonincreasing, and finally

converges to the optimal solution, which is benefited from the

convergence guarantee of the ADMM framework.

V. EXPERIMENTAL ANALYSIS

A. Dataset Description and Evaluation Metrics

Dataset Description: In the experiments, we adopt seven

real-world networks as benchmark datasets. These networks

are downloaded or extracted from three websites: Network

Data1 (Polbooks, Football, and Polblogs), Insight Project Re-

sources2 (PoliticsIE, PoliticsUK, and Olympics), and SNAP3

(EmailEU). All the networks have ground-truth communities.

Their basic information is listed in Tabel I.

Evaluation Metrics: Considering that all the networks have

ground-truth communities, we employ Normalized Mutual

Information (NMI) and Accuracy (ACC) as the evaluation

metrics. Both NMI and ACC take value in the range of [0, 1].
And higher value indicates better community detection results.

For their detailed descriptions, please refer to [6].

B. Comparison Methods

We choose eight representative methods as baseline meth-

ods, including two spectral clustering related methods, namely

Leading Eigenvector (LE) [20] and Constrained Laplacian
Rank (CLR) [14], and six NMF related methods, namely Sym-
metric NMF (SNMF) [7], Graph regularized NMF (GNMF)

1http://www-personal.umich.edu/∼mejn/netdata/
2http://mlg.ucd.ie/index.html
3https://snap.stanford.edu/data/index.html
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TABLE II: Performance comparison on NMI and ACC (bold numbers represent the best results).

Networks LE CLR SNMF GNMF BNMF BigClam HNMF MNMF A2NMF

N
M

I
Polbooks 0.5281 0.5745 0.5253 0.5410 0.5195 0.4215 0.5253 0.0256 0.6435
Football 0.6648 0.9242 0.9116 0.9127 0.9072 0.8273 0.8118 0.2518 0.9385
PoliticsIE 0.7778 0.8395 0.7494 0.8259 0.7896 0.6580 0.5910 0.0345 0.9058
PoliticsUK 0.8612 0.8809 0.7447 0.8752 0.7777 0.5411 0.6577 0.0165 0.9720
Olympics 0.4924 0.8646 0.8505 0.8741 0.9077 0.8386 0.6226 0.2411 0.9253
EmailEU 0.5196 0.5221 0.6839 0.7025 0.6763 0.5875 0.5083 0.1999 0.6977
Polblogs 0.1238 0.0136 0.4493 0.4530 0.4955 0.1373 0.5012 0.0010 0.5604

A
C

C

Polbooks 0.7810 0.8381 0.7410 0.7671 0.7700 0.6890 0.7905 0.4052 0.8667
Football 0.5478 0.9130 0.8917 0.9048 0.8696 0.7613 0.7913 0.2426 0.9333
PoliticsIE 0.8592 0.8879 0.6865 0.8075 0.8546 0.7409 0.5948 0.2057 0.9368
PoliticsUK 0.9498 0.9618 0.7288 0.9588 0.8982 0.7323 0.6993 0.2437 0.9871
Olympics 0.3664 0.8254 0.7603 0.8093 0.8689 0.7161 0.5000 0.1422 0.8980
EmailEU 0.3821 0.3950 0.5614 0.5974 0.5845 0.4839 0.3443 0.0978 0.6359
Polblogs 0.4282 0.5067 0.8684 0.8698 0.8728 0.5939 0.8826 0.5156 0.9007

[21], Bayesian NMF (BNMF) [8], BigClam [22], Homophily-
based NMF (HNMF) [9], and Modularized NMF (MNMF)
[23]. The six NMF-based methods are highly comparable with

our A2NMF model.

C. Parameter Settings

Since all the eight baseline methods and our A2NMF model

require a parameter to specify the number of communities

to detect, to test whether they can identify the ground-truth

communities or not, the number of communities (i.e., k) to

extract for each method is set to the number of ground-truth

communities directly, as listed in Table I. For the methods

LE, CLR, SNMF and BNMF, there are no more parameters

to be set. For the methods BigClam and HNMF, we tune the

parameters following the guidance of their authors. In order to

identify the community structures of networks, MNMF needs

to embed each node into a low-dimensional space. Here, we

fix the dimensionality at 100 consistently. For GNMF and our

A2NMF model, we tune all the parameters in the range of

{10−3, 10−2, 10−1, 100, 101, 102, 103}. Note that we tune the

parameters in such a wide range, the purpose of which is to

provide a comprehensive analysis of the performance of our

model. However, as shown in our analyses of the parameters

sensitivity (see details in Section V-E), the parameters can be

tuned in a smaller range in practice. For a fair comparison, we

run each method 20 times, and the average results are reported.

D. Community Detection Results

The results with respect to NMI and ACC are shown in

Table II, where the bold numbers represent the best results.

As can be seen, our A2NMF model significantly outperforms

the eight baseline methods on all the networks, except for per-

forming the second best on EmailEU in term of NMI. Taking

Polblogs as an example, we can see that this network is very

sparse and it contains only two communities, which means that

this network does not have significant community structures.

Even so, our A2NMF model achieves 90% accuracy in this

network. For the evaluation metric NMI, our A2NMF model

also achieves over 5% performance promotion. These results

verify that our A2NMF model has strong ability to identify

communities more accurately than the baseline methods. The

success of our A2NMF model lies in the fact that it can learn

a robust affinity matrix which captures the intrinsic similarity

between nodes. This affinity matrix then guides the learning

of the community memberships more precisely.

E. Analysis

In this subsection, we further analyze the convergence speed

and the parameters sensitivity of our A2NMF model on the

Polbooks and PoliticsUK networks. Similar results can be

observed on the other five networks.

Convergence Analysis: To test the convergence speed, we

fix all the parameters at 1. The results are shown in Fig. 1.

As can be seen, our A2NMF model converges very fast on

both networks. The objective function value becomes stable

within only a few iterations (usually less than 10). The results

show that our optimization algorithm is very efficient, and it

is able to converge to the optimal solution rapidly. Therefore,

in practice, we can set the number of iterations to be 10.

Parameter Analysis: Recall that our A2NMF model has

three parameters to adjust the contribution of different com-

ponents in (5). To analyze the sensitivity of the parame-

ters α, β and γ, we tune each parameter at the range of

{10−3, 10−2, 10−1, 100, 101, 102, 103} and fix the other two

parameters at 1. The results are shown in Fig. 2, Fig. 3 and

Fig. 4 respectively. Note that we have adopted logarithmic

scale for the x-axis in these three figures. It can be observed

that our A2NMF model is quite robust to parameters α and β,

while it is sensitive to parameter γ. When γ becomes large,

the reconstruction error of the adjacency matrix cannot be

well controlled, which makes our model fail to identify the

community structures.

VI. CONCLUSION

In this paper, we propose A2NMF to learn the community

memberships and the affinity matrix that can capture the intrin-

sic similarity between nodes simultaneously. Due to the mutual

guidance between the learning of the community membership

matrix and the learning of the affinity matrix, we are able to

find the intrinsic similarity between nodes and the accurate

community memberships. To make our A2NMF model more

robust, we first embed each node into a low-dimensional space

via a transformation matrix with community structures being
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Fig. 1: Convergence analysis of our A2NMF model.
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Fig. 2: Effects of parameter α on the performance of A2NMF.

preserved. And then the affinity matrix is learned in this low-

dimensional space. The proposed model is solved under the

ADMM framework efficiently. Extensive experimental results

demonstrate that our model can identify communities more

accurately than the baseline methods.

In this paper, we focus on disjoint community detection.

Given the fact that real-world networks are sometimes com-

posed of overlapping communities, it is valuable to extend our

model to make it suitable for overlapping community detec-

tion. The main challenge to achieve this goal is how to preserve

the overlapping community structures when embedding nodes

into the low-dimensional space.

ACKNOWLEDGMENT

This work was supported by the National Key R&D Pro-

gram of China (2018YFB1004804), the National Natural Sci-

ence Foundation of China (61722214, 11801595), the Program

for Guangdong Introducing Innovative and Entrepreneurial

Teams (2016ZT06D211) and the Pearl River S&T Nova

Program of Guangzhou (201710010046). Correspondence to

Chuan Chen.

REFERENCES

[1] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” PNAS, vol. 99, no. 12, pp. 7821–7826, 2002.

[2] S. Fortunato, “Community detection in graphs,” Physics reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[3] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex
networks reveal community structure,” PNAS, vol. 105, no. 4, pp. 1118–
1123, 2008.

[4] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[5] M. E. Newman, “Modularity and community structure in networks,”
PNAS, vol. 103, no. 23, pp. 8577–8582, 2006.

[6] T. Chakraborty, A. Dalmia, A. Mukherjee, and N. Ganguly, “Metrics
for community analysis: A survey,” ACM Computing Surveys (CSUR),
vol. 50, no. 4, p. 54, 2017.

[7] F. Wang, T. Li, X. Wang, S. Zhu, and C. Ding, “Community discovery
using nonnegative matrix factorization,” DMKD, vol. 22, no. 3, pp. 493–
521, 2011.

-3 -2 -1 0 1 2 3

log(β)

0

0.2

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
c
e

ARI

NMI

ACC

(a) Polbooks

-3 -2 -1 0 1 2 3

log(β)

0.6

0.7

0.8

0.9

1.0

P
e
rf

o
rm

a
n
c
e

ARI

NMI

ACC

(b) PoliticsUK

Fig. 3: Effects of parameter β on the performance of A2NMF.

-3 -2 -1 0 1 2 3

log(γ)

0

0.2

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
c
e

ARI

NMI

ACC

(a) Polbooks

-3 -2 -1 0 1 2 3

log(γ)

0

0.2

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
c
e

ARI

NMI

ACC

(b) PoliticsUK

Fig. 4: Effects of parameter γ on the performance of A2NMF.

[8] I. Psorakis, S. Roberts, M. Ebden, and B. Sheldon, “Overlapping
community detection using bayesian non-negative matrix factorization,”
Physical Review E, vol. 83, no. 6, p. 066114, 2011.

[9] H. Zhang, T. Zhao, I. King, and M. R. Lyu, “Modeling the homophi-
ly effect between links and communities for overlapping community
detection.” in IJCAI, 2016, pp. 3938–3944.

[10] Y. Pei, N. Chakraborty, and K. Sycara, “Nonnegative matrix tri-
factorization with graph regularization for community detection in social
networks,” in IJCAI, 2015, pp. 2083–2089.

[11] X. He and P. Niyogi, “Locality preserving projections,” in NIPS, 2004,
pp. 153–160.

[12] S. Chang, G.-J. Qi, C. C. Aggarwal, J. Zhou, M. Wang, and T. S. Huang,
“Factorized similarity learning in networks,” in ICDM. IEEE, 2014,
pp. 60–69.

[13] F. R. Chung, Spectral graph theory. American Mathematical Soc.,
1997, no. 92.

[14] F. Nie, X. Wang, M. I. Jordan, and H. Huang, “The constrained laplacian
rank algorithm for graph-based clustering.” in AAAI, 2016, pp. 1969–
1976.

[15] K. Fan, “On a theorem of weyl concerning eigenvalues of linear
transformations i,” PNAS, vol. 35, no. 11, pp. 652–655, 1949.

[16] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[17] D. Kim, S. Sra, and I. S. Dhillon, “A non-monotonic method for large-
scale non-negative least squares,” Optimization Methods and Software,
vol. 28, no. 5, pp. 1012–1039, 2013.

[18] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient
projections onto the l 1-ball for learning in high dimensions,” in ICML.
ACM, 2008, pp. 272–279.

[19] Z. Wen and W. Yin, “A feasible method for optimization with orthog-
onality constraints,” Mathematical Programming, vol. 142, no. 1-2, pp.
397–434, 2013.

[20] M. E. Newman, “Finding community structure in networks using the
eigenvectors of matrices,” Physical review E, vol. 74, no. 3, p. 036104,
2006.

[21] L. Yang, X. Cao, D. Jin, X. Wang, and D. Meng, “A unified semi-
supervised community detection framework using latent space graph
regularization,” IEEE transactions on cybernetics, vol. 45, no. 11, pp.
2585–2598, 2015.

[22] J. Yang and J. Leskovec, “Overlapping community detection at scale:
a nonnegative matrix factorization approach,” in WSDM. ACM, 2013,
pp. 587–596.

[23] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding.” in AAAI, 2017, pp. 203–209.

1379

View publication statsView publication stats

https://www.researchgate.net/publication/330027127

